The effect of changes in surface winds and ocean stratification on coastal upwelling and sea surface temperatures in the Pliocene

نویسندگان

  • Madeline D. Miller
  • Eli Tziperman
چکیده

Sea surface temperature (SST) in subtropical eastern boundary upwelling zones is shown to be affected by three main factors: large-scale ocean stratification, upwelling-favorable sea surface wind stress, and the surface concentration (baroclinicity) of the alongshore pressure gradient driving the incoming geostrophic flow which balances the Ekman surface outflow. Pliocene-aged SST proxies suggest that some combination of differences in upwelling forcing enable the sea surface temperatures in these zones to increase by up to 11∘C. We find that large warming in SST in response to the three factors, of up to about 10∘C in addition to a mean Pliocene ocean warming of 2–3∘C, is concentrated in the direct upwelling zone. In the location of proxy sea surface temperatures, about 120 km away from the coast, and outside the coastal upwelling zone, the SST response to changes in wind and stratification is weaker, only accounting for up to 3.4∘C above the mean Pliocene warming. Increased baroclinicity of the alongshore pressure gradient has a smaller effect, accounting for less than 2∘C increases at both the coast and proxy site. The SST seaward (westward) of the upwelling zone is primarily determined by ocean-atmosphere heat exchange and basin-scale ocean forcing, rather than by changes in upwelling. The spatial pattern of SST change with each of the three forcing factors is similar, and therefore, all could contribute to the Pliocene-modern difference in coastal SST.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reductions in midlatitude upwelling-favorable winds implied by weaker large-scale Pliocene SST gradients

The early-to-mid Pliocene (3–5.3 Ma) is the most recent geologic period of significant global warmth. Proxy records of Pliocene sea surface temperature (SST) indicate significant and still unexplained warm anomalies of 3∘C–9∘C in midlatitude eastern boundary currents, where present-day cool temperatures are maintained by wind-driven upwelling. Here we quantify the effect of large-scale Pliocene...

متن کامل

Seasonal Variations of Seawater Properties in the Southwestern Coastal Waters of the Caspian Sea

Seasonal variations of the seawater properties (e.g. temperature, salinity, density and chlorophyll-a) in western part of the southern coastal waters of the Caspian Sea near the Iranian coast were studied. A portable CTD probe was applied for profiling from sea surface to bottom at 23 stations. Maximum depth of the profiling stations was more than 470 m in the study area. Vertical structure of ...

متن کامل

Contribution of changes in opal productivity and nutrient distribution in the coastal upwelling systems to Late Pliocene/Early Pleistocene climate cooling

The global Late Pliocene/Early Pleistocene cooling (∼ 3.0–2.0 million years ago – Ma) concurred with extremely high diatom and biogenic opal production in most of the major coastal upwelling regions. This phenomenon was particularly pronounced in the Benguela upwelling system (BUS), off Namibia, where it is known as the Matuyama Diatom Maximum (MDM). Our study focuses on a new diatom silicon is...

متن کامل

The Pliocene paradox (mechanisms for a permanent El Niño).

During the early Pliocene, 5 to 3 million years ago, globally averaged temperatures were substantially higher than they are today, even though the external factors that determine climate were essentially the same. In the tropics, El Niño was continual (or "permanent") rather than intermittent. The appearance of northern continental glaciers, and of cold surface waters in oceanic upwelling zones...

متن کامل

Arabian Sea response to monsoon variations

[1] This study aims to quantify the impact of strong monsoons on the mixed layer heat budget in the Arabian Sea by contrasting forced ocean general circulation model simulations with composite strong and weak monsoon winds. Strong (weak) monsoons are defined as years with zonal component of the Somali Jet being greater (smaller) by more than a standard deviation of the long-term mean of the Nat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017